LOWER BRAZOS RIVER FLOODPLAIN PROTECTION PLANNING STUDY

Rosenberg, Texas November 19, 2015

Reasons for the Study

- * One of the fastest growing areas in the country
- Hydrologic and hydraulic models/data are dated outside of Fort Bend County
- Need for consistent modeling methodology across county boundaries
- Need to assess lower Brazos watershed from a comprehensive basinwide perspective (existing conditions and alternatives)
- * 10,000 square miles of uncontrolled drainage area

Goals of the Study

- Quantify existing flooding issues and flood damage reduction alternatives
- Update hydrologic and hydraulic data for the lower Brazos
 River (Hempstead gauge to mouth across 5 counties)
- * Calibrate new models to historical events and provide flood volumes, flood depths, and flood durations
- Facilitate land use planning, emergency response, and sound floodplain management

May-June 2015

Lower Brazos River Floodplain Protection Planning Study

Schedule

Phase 1

- * Terrain Development March 2015
- * Data Collection February 2015
- Hydrology September 2015
- * Field Surveys June 2015
- * Hydraulics February 2016
- * Alternatives Formulation June 2016
- Flood Damage Analysis June 2016
- * Environmental Constraints Analysis April 2016
- * Draft Report October 2016
- * Final Report April 2017

Lower Brazos River Floodplain Protection Planning Study

Phase 2

- * Begin Work January 2016
- * Terrain Development July 2016
- * Data Collection March 2016
- * Field Surveys June 2016
- * Hydraulics November 2016
- * Alternatives Formulation June 2017
- * Flood Damage Analysis June 2017
- * Environmental Constraints Analysis April 2017
- * Draft Report October 2017
- * Final Report March 2018

Hydrologic Modeling Update

Hydrology Topics

A. Where We Left Off

- B. Where We Are Going
- C. Hydrologic Model
- D. Flood Frequency Analysis
- E. Design Storm Analysis
- F. Discharge Comparison
- G. Conclusions

Where We Left Off

- * Hydrology
 - * Sub-basin delineation
 - * Data Collection
 - * HEC-HMS Skeleton Model
- * Flood Frequency Analysis
 - Preliminary Flood Frequency Analysis at Hempstead and Richmond

9

* Seeing signs of reduced discharges

Hydrology Topics

A. Where We Left off

B. Where We Are Going

- C. Hydrologic Model
- D. Flood Frequency Analysis
- E. Design Storm Analysis
- F. Discharge Comparison
- G. Conclusions

Where We Are Going

Hydrology Topics

- A. Where We Left OffB. Where We Are Going
- C. Hydrologic Model
- D. Flood Frequency Analysis
- E. Design Storm Analysis
- F. Discharge Comparison
- G. Conclusions

* Lower Brazos HMS Model

- * 9,766 sq. mi. below 7 USACE reservoirs
- * 154 sub-basins (63 sq. mi. avg. size)
- * 114 routing reaches (over 1,240 river miles modeled)
- Reach Routing
 - * Muskingum Brazos & Navasota
 - * Modified Puls Elsewhere
- Above Hempstead Gauge
 - * Initial and Constant Loss Method
 - * Snyder Unit Hydrograph Method
- Below Hempstead Gauge
 - * Exponential Loss Method
 - * Clark Unit Hydrograph Method

* Calibration Methodology

- * Data Collection
 - * Stream Flow
 - * Reservoir Releases
 - * Rainfall Gridded & Gauged

Lower Brazos River Floodplain Protection Planning Study

Calibration Methodology Cont.

- * 17 calibration zones
- * 8 calibration storms
 - * 7 from MPE era
 - * 1 from ground gauges
- * Reset using observed data
- * Parameter Adjustment
 - Loss and Unit Hydrograph
 Parameters
 - * Routing
 - * 10% Rule and eyeball test

BRA Calibration River at SH 21 Near Bryan, TX

Parameter Summary					
Initial Loss	Constant Loss	Percent Impervious	Snyder Ct	Snyder Cp	
(in)	(iph)	(%)			
2.9	0.14	6.0	2.00	0.80	

Results Summary					
	Peak (cfs)	Volume (acre-ft)			
Observed	78,200	1,693,257			
Computed	81,979	1,609,639			
Residual	3,779	-83,618			
Error	5%	-5%			

Calibration Methodology Cont.

- * Brazos River Routing
 - * Muskingum
 - Ideal for less than bank full conditions
 - Diversion reach (floodplain storage)
 - * Validation

- * Calibration Methodology Cont.
 - * Brazos River Routing Validation Event 1957

* Calibration Results

- Single set of unit-hydrograph parameters
- * Single set of reach routing parameters
- Losses vary by storm and antecedent moisture conditions
- * Training wheels off validation
 - * 1991
 - * 2015

* Calibration Results Cont.

1991-Navasota River @ Groesbeck

Lower Brazos River Floodplain Protection Planning Study

1991-Brazos River @ Bryan

* Calibration Results Cont.

1991-Brazos River @ Hempstead

Lower Brazos River Floodplain Protection Planning Study

1991-Brazos River @ Richmond

* Calibration Results Cont.

2015-Little River @ Cameron

Lower Brazos River Floodplain Protection Planning Study

2015-Navasota River @ Groesbeck

* Calibration Results Cont.

2015-Brazos River @ Hempstead

Lower Brazos River Floodplain Protection Planning Study

2015-Brazos River @ Richmond

Hypothetical Storms

* Lower Basin Only

*

- * No contribution from area above USACE reservoirs
- * 1991 and 2015 small reduction compared to computed
- * 1913 "Regulated"
- * Unregulated
 - * Simulated with unregulated reservoir discharges from USACE Riverware Model
 - * 1991 and 1957

Regulated vs Lower Basin Only Discharges (cfs)

Site	Observed	Computed	No Reservoirs
1991-Hempstead	116,000	119,700	116,200
2015-Hempstead	92,500	91,000	84,800
1991-Richmond	94,000	96,300	90,500
2015-Richmond	74,300	83,000	76,500

- * 1913 "Regulated"
 - Hempstead 155,500 cfs
 - Richmond 115,200 cfs

Hypothetical Unregulated Discharges (cfs)

Site	Observed	Unregulated
1957-Hempstead	143,000	189,000
1991-Hempstead	116,000	204,000
1957-Richmond	119,000	161,000
1991-Richmond	94,000	160,000

Hydrology Topics

- A. Where We Left Off
- B. Where We Are Going
- C. Hydrologic Model

D. Flood Frequency Analysis

- E. Design Storm Analysis
- F. Discharge Comparison
- G. Conclusions

Effective FIS Discharge Sources

- * Brazos River at Hempstead
 - * 2009 Waller Co. FIS

*

- Methodology 1979 Espey, Huston & Associates, Inc. (EHA), <u>Determination of the 100-Year Flood Discharge of the Brazos River at</u> <u>Richmond</u>
- * 1979 report updated in 1984 for Richmond but not for Hempstead
- * Brazos River at Richmond
 - * 2014 Fort Bend Co. FIS
 - * Methodology 2006 LJA Engineering and Surveying, Inc., <u>Brazos River</u> within Fort Bend County, Texas – Flood Frequency Analysis
 - * Retains portions of 1984 EHA, <u>Reassessment of 100-year Peak Flow</u>, <u>Brazos River at Richmond</u>,

- * Methodology
 - * Homogeneous Record
 - * Log Pearson Type III Analysis
 - * Unregulated to Regulated Transform

350

Fully Regulated

Homogeneous Record

- * LJA Method
 - * Described in 2006 report by LJA for Ft. Bend Co. FIS
 - * Extend record at Richmond
 - * Develop new record at Hempstead
 - * Estimate total runoff volume for each annual peak event
 - * Best-fit through Vol. vs Q
 - Adjust post-1952 observed annual peak Q's to unregulated
 - * Additional adjustment for partially regulated period

Hempstead Total Storm Volume vs Q Relationship

27

y = 5.077x^{0.693}

- Homogeneous Record cont. *
 - * USACF Riverware
 - * Riverware data provided by USACE
 - * Estimated daily flows for regulated and unregulated conditions
 - * Data set supplemented by observed flows prior to 1952
- Lower Brazos River Floodplain Protection Planning Study

- Log Pearson Type III Analysis *
 - * Historical Data
 - * Used 1884, 1885, 1899, 1913, and 1915 discharge estimates
 - Historical record begins in 1852, based on news articles
 - * Skew
 - * Generalized (Map) skew not used
 - * Watershed is too large

HALFF

River Authority

Log Pearson Type III Analysis cont.

- * Historical Data?
 - * Reduces discharges
 - Estimates may be inaccurate, but something happened and shouldn't be ignored
 - * Included in analysis
- * Final Answer (Unregulated Conditions)
 - * LJA Method described in 2006 Fort Bend County FIS
 - * At Richmond
 - * Extended Record from 2004 to 2015
 - * Little Change
 - * At Hempstead
 - * New Analysis
 - * Inferred historic discharges from Richmond

Unregulated Discharges at Hempstead

Return Period	2015 Study LJA Method	USACE Riverware	2015 Study LJA Method w/o Hist.
10-yr	148,000	138,000	141,000
50-yr	222,000	222,000	204,000
100-yr	252,000	262,000	229,000
500-yr	318,000	364,000	282,000

Unregulated Discharges at Richmond

Return Period	2015 Study LJA Method	USACE Riverware	2015 Study LJA Method w/o Hist.
10-yr	133,000	128,000	120,000
50-yr	195,000	194,000	159,000
100-yr	220,000	223,000	172,000
500-yr	274,000	292,000	198,000

Unregulated to Regulated Transform EHA Method

- * Developed in 1979 EHA Brazos River study
- * Updated in 1984 EHA Brazos River Reassessment study
- * Comparison of unregulated and regulated discharges for frequency storms
- * Resulted in $Q_{Regulated}$ = 76% of $Q_{Unregulated}$ for all frequencies
- * 2006 LJA report for Ft. Bend Co. FIS uses this multiplier
- * Concerns
 - * Uses Muskingum routing throughout, i.e. very little attenuation along the Brazos
 - * Unrealistic design storm, approximately 3" rainfall in 24-hours on entire watershed for 100-year event

* Unregulated to Regulated Transform

- * Volume vs. Q Adjustment
 - * Used relationship developed for creating unregulated flow record

*
$$Q_{reg} = c_{reg} V^{b_{reg}}$$

*
$$Q_{unreg} = c_{unreg} V^{b_{unreg}}$$

* Solve for V and substitute

*
$$Q_{reg} = c_{Reg} \left[\frac{Q_{unreg}}{c_{unreg}} \right]^{\left(\frac{b_{reg}}{b_{unreg}} \right)}$$

- Plot curve on unregulated frequency plot
- Plot observed regulated events
- * Compare to hypothetical storms

Authority

34

Lower Brazos River Floodplain Protection Planning Study

35

Lower Brazos River Floodplain Protection Planning Study

Hydrology Topics

- A. Where We Left Off
- B. Where We Are Going
- C. Hydrologic Model
- D. Flood Frequency Analysi
- E. Design Storm Analysis
- F. Discharge Comparison G. Conclusions

* Loss Rates

- Initial Loss 1.5" for 10-year and adjust values by frequency event per USACE guidance
- Constant Loss Use 2015 values for 10-yr event and adjust values by frequency event per USACE guidance
- Design Storm
 - * Elliptical Shape
 - * 5-day duration
 - * Alternating block temporal distribution
 - * Precipitation Data Source Atlas of Depth-Duration-Frequency of Precipitation Annual Maxima for Texas, USGS 2004
 - Areal Reduction Curve
 - * USACE SWF Curve used in Upper Trinity Model
 - * Developed from storm data across the state
 - * Extended past 10,000 sq. mi. based on 1899 Hearne Event
 - * Critical location and orientation determined to produce maximum discharge

* Lower Brazos Critical Storm

- * Located near Hwy. 6 and 14
- * Near Bremond
- * Orientated 330° CW from N
- Location and Orientation used for all frequencies
- * Maximum 5-Day Depths
 - * 10-yr = 8.4" 50-yr = 12.0"
 - * 100-yr = 13.6" 500-yr = 17.7"

Legend

- Centered Ellipse

Key_Locations
 Stream_Centerine

100-Year Critical Storm

* Antecedent Reservoir Releases

- Conversations with USACE suggest that a realistic scenario is a storm occurs below reservoirs while the reservoirs are making releases from a previous event in the upper basin.
- * How much release?
 - * USACE controls holds releases up to 60,000 cfs at Richmond and Hempstead
 - * 60,000 cfs release would be worst case and unlikely
 - * Selected the upper 10th percentile flood release from each reservoir based on historical release data
 - * Equal to approximately 25,000 cfs combined from all reservoirs
 - * In HEC-HMS, the release is shutoff when 60,000 cfs threshold is exceeded at downstream control points

* Results

Return Period	Hempstead Discharge w/o Release (cfs)	Hempstead Discharge w/ Release (cfs)	Richmond Discharge w/o Release (cfs)	Richmond Discharge w/ Release (cfs)
10-Year	100,000	107,000	78,000	86,000
50-Year	140,000	148,000	113,000	122,000
100-Year	161,000	170,000	131,000	139,000
500-Year	217,000	223,000	169,000	178,000

Hydrology Topics

- A. Where We Left Off
- B. Where We Are Going
- C. Hydrologic Model
- D. Flood Frequency Analysi
- E. Design Storm Analysis
- F. Discharge Comparison
- G. Conclusions

Discharge Comparison

Hempstead

Richmond

		2015	2015				2015	2015	
Return	2009 Waller	Study w/ EHA	Study w/ Vol	Freq. Storm	Return	2014 Ft. Bend	Study w/ EHA	Study w/ Vol	Freq. Storm
Period	Co. FIS	Adj.	vs Q Adj.	Analysis	Period	Co. FIS	Adj.	vs Q Adj.	Analysis
10-Year	110,000	114,000	89,000	107,000	10-Year	103,000	103,000	83,000	86,000
50-Year	182,473	170,000	125,000	148,000	50-Year	147,000	149,000	108,000	122,000
100-Year	206,962	192,000	139,000	170,000	100-Year	164,000	167,000	118,000	139,000
500-Year	260,000	244,000	169,000	223,000	500-Year	202,000	210,000	138,000	178,000

Hydrology Topics

- A. Where We Left Off
- B. Where We Are Going
- C. Hydrologic Model
- D. Flood Frequency Analysi
- E. Design Storm Analysis
- F. Discharge Comparison
- **G.** Conclusions

Conclusions

- * A well calibrated hydrologic model was developed
- * A flood frequency analysis, informed by observed and hypothetical storms was performed
- * A realistic design storm and reservoir release scheme was developed
- The design storm was modeled with the calibrated hydrologic model
- Results are lower than effective FIS discharges, but higher than flood frequency analysis

Conclusions

Return Period	2009 Waller Co. FIS Hempstead Discharge (cfs)	2015 Study Hempstead Discharge (cfs)	2014 Ft. Bend Co. FIS Richmond Discharge (cfs)	2015 Study Richmond Discharge (cfs)
10-year	110,000	107,000 (-3,000, -3%)	103,000	86,000 (-17,000, -17%)
50-year	182,473	148,000 (-34,473, -19%)	147,000	122,000 (-25,000, -17%)
100-year	206,962	170,000 (-36,962, -18%)	164,000	139,000 (-25,000, -15%)
500-year	260,000	223,000 (-37,000, -14%)	202,000	178,000 (-24,000, -12%)
		Sta DEVELOP	Brazos	

Lower Brazos River Floodplain Protection Planning Study

Hydraulic Modeling Update

Fort Bend Unsteady HEC-RAS

- Incorporate the Fort Bend 2015 HEC-RAS FIS Model
 - * Briefly reviewed the steady state model
 - Stationing revised to align with new Brazoria County HEC-RAS Model
 - * Converting from steady state to unsteady model
 - * Add 2015 updated discharges
 - Updated floodplain mapping and water surface elevation profiles will be developed

Brazoria Unsteady HEC-RAS

- * Develop the Hydraulic Model
 - * Model Cross Sections
 - * Updated terrain data with survey data
 - Develop simulations with 2015 updated discharges
 - * Updated floodplain mapping and water surface elevation profiles will be developed

Brazoria Unsteady HEC-RAS

Lower Brazos River Floodplain Protection Planning Study

Brazoria Unsteady HEC-RAS

Lower Brazos River Floodplain Protection Planning Study

Questions?